
Computer Graphics
Karin Kosina (vka kyrah)

Computer Graphics
Karin Kosina (vka kyrah)

Part 2 (reloaded)

Review of the first workshop

OpenGL

• a platform-independent API for 2D and 3D graphics applications

• a standard, not a library

• various implementions (e.g. by graphics card vendors) with
varying degrees of optimisation

• Input: primitives (polygons, lines, points)

• Output: pixels

• low-level

• state-machine

• only does rendering

• need additional framework for OS integration, image loading,...

SDL

• SDL is a free cross-platform multi-media development API

• abstraction for OS-dependent tasks

• create window and rendering context

• handle keyboard, mouse, and joystick events

• audio

• thread abstraction

• ...

• see http://libsdl.org

SDL framework

int main(int argc, char ** argv)
{
 int width = 640, height = 480;

 // Initialize SDL
 if (SDL_Init(SDL_INIT_VIDEO) < 0) {
 fprintf(stderr, "Unable to init SDL: %s\n", SDL_GetError());
 return -1;
 }

 if (!SDL_SetVideoMode(width, height, 32, SDL_OPENGL)) {
 fprintf(stderr, "Unable set video mode: %s\n", SDL_GetError());
 SDL_Quit();
 return -1;
 }

 SDL_WM_SetCaption("SDL/OpenGL intro", NULL); // window title
 myinit(width, height); // initialize OpenGL

 // ... continued on next page

SDL framework

 // main application loop
 bool done = false;
 while (!done) {
 mydisplay();
 SDL_Event event;
 while (SDL_PollEvent(&event)) {
 if (event.type == SDL_QUIT) done = true;
 if (event.type == SDL_KEYDOWN) {
 switch(event.key.keysym.sym) {
 case SDLK_ESCAPE:
 done = true;
 }
 }
 }
 }

 SDL_Quit();
 return 0;
}

OpenGL initialisation

void myinit(int width, int height)
{
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glViewport(0, 0, width, height);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)width/(float)height, 0.1, 100.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0.0, 0.0, 4.0, // eye
 0.0, 0.0, -1.0, // center
 0.0, 1.0, 0.0); // up

}

drawing

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glPushMatrix();

 glTranslatef(1.0f, 0.0f, 0.0f);

 glBegin(GL_TRIANGLES);
 glColor3f(1.0f, 0.0f, 0.0f);
 glVertex3f(0.0f, 1.0f, 0.0f);
 glColor3f(0.0f, 0.0f, 1.0f);
 glVertex3f(1.0f,-1.0f, 0.0f);
 glColor3f(0.0f, 1.0f, 0.0f);
 glVertex3f(-1.0f,-1.0f, 0.0f);
 glEnd();

 glPopMatrix();
 SDL_GL_SwapBuffers();
}

manipulating the matrix stack

• glPushMatrix()

• push all matrices in the current stack (determined by
glMatrixMode()) down one level (the topmost matrix is
duplicated)

• glPopMatrix()

• pop the top matrix off the stack. The second matrix from
the top of the stack becomes top, the contents of the
popped matrix are destroyed.

model transformations in OpenGL

• 3 modeling transformations

• glTranslate*()

• glRotate*()

• glScale*()

• Multiply a proper matrix for transform/rotate/scale to the
current matrix and load the resulting matrix as current
matrix.

order of transformations

• Matrix multiplication is
not commutative.

• The order of
operations is
important!

• Example:
Rotation and
translation

rotate first, than translate

translate first, than rotate

projection
calculate the desired field of view.)

The preceding paragraph mentions inches and millimeters - do these really have anything to do with

OpenGL? The answer is, in a word, no. The projection and other transformations are inherently unitless.

If you want to think of the near and far clipping planes as located at 1.0 and 20.0 meters, inches,

kilometers, or leagues, it's up to you. The only rule is that you have to use a consistent unit of

measurement. Then the resulting image is drawn to scale.

Orthographic Projection

With an orthographic projection, the viewing volume is a rectangular parallelepiped, or more informally,

a box (see Figure 3-15). Unlike perspective projection, the size of the viewing volume doesn't change

from one end to the other, so distance from the camera doesn't affect how large an object appears. This

type of projection is used for applications such as creating architectural blueprints and computer-aided

design, where it's crucial to maintain the actual sizes of objects and angles between them as they're

projected.

Figure 3-15 : Orthographic Viewing Volume

The command glOrtho() creates an orthographic parallel viewing volume. As with glFrustum(), you

specify the corners of the near clipping plane and the distance to the far clipping plane.

void glOrtho(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far);

Creates a matrix for an orthographic parallel viewing volume and multiplies the current matrix by

it. (left, bottom, -near) and (right, top, -near) are points on the near clipping plane that are

mapped to the lower-left and upper-right corners of the viewport window, respectively. (left,

bottom, -far) and (right, top, -far) are points on the far clipping plane that are mapped to the same

respective corners of the viewport. Both near and far can be positive or negative.

With no other transformations, the direction of projection is parallel to the z-axis, and the viewpoint faces

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (27 of 49) [4/28/2000 9:45:03 PM]

• Transformation of the view volume into a unit cube with
extreme points at (-1, -1, -1) and (1, 1, 1).

• Two projection methods: orthographic vs. perpective
projection

• Orthographic projection:

• View volume is a rectangular box.

• Parallel lines remain parallel
after the transform.

projection
calculate the desired field of view.)

The preceding paragraph mentions inches and millimeters - do these really have anything to do with

OpenGL? The answer is, in a word, no. The projection and other transformations are inherently unitless.

If you want to think of the near and far clipping planes as located at 1.0 and 20.0 meters, inches,

kilometers, or leagues, it's up to you. The only rule is that you have to use a consistent unit of

measurement. Then the resulting image is drawn to scale.

Orthographic Projection

With an orthographic projection, the viewing volume is a rectangular parallelepiped, or more informally,

a box (see Figure 3-15). Unlike perspective projection, the size of the viewing volume doesn't change

from one end to the other, so distance from the camera doesn't affect how large an object appears. This

type of projection is used for applications such as creating architectural blueprints and computer-aided

design, where it's crucial to maintain the actual sizes of objects and angles between them as they're

projected.

Figure 3-15 : Orthographic Viewing Volume

The command glOrtho() creates an orthographic parallel viewing volume. As with glFrustum(), you

specify the corners of the near clipping plane and the distance to the far clipping plane.

void glOrtho(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far);

Creates a matrix for an orthographic parallel viewing volume and multiplies the current matrix by

it. (left, bottom, -near) and (right, top, -near) are points on the near clipping plane that are

mapped to the lower-left and upper-right corners of the viewport window, respectively. (left,

bottom, -far) and (right, top, -far) are points on the far clipping plane that are mapped to the same

respective corners of the viewport. Both near and far can be positive or negative.

With no other transformations, the direction of projection is parallel to the z-axis, and the viewpoint faces

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (27 of 49) [4/28/2000 9:45:03 PM]

glOrtho(float left, float right,
 float bottom, float top,
 float near, float far);

• Transformation of the view volume into a unit cube with
extreme points at (-1, -1, -1) and (1, 1, 1).

• Two projection methods: orthographic vs. perpective
projection

• Orthographic projection:

• View volume is a rectangular box.

• Parallel lines remain parallel
after the transform.

projection
calculate the desired field of view.)

The preceding paragraph mentions inches and millimeters - do these really have anything to do with

OpenGL? The answer is, in a word, no. The projection and other transformations are inherently unitless.

If you want to think of the near and far clipping planes as located at 1.0 and 20.0 meters, inches,

kilometers, or leagues, it's up to you. The only rule is that you have to use a consistent unit of

measurement. Then the resulting image is drawn to scale.

Orthographic Projection

With an orthographic projection, the viewing volume is a rectangular parallelepiped, or more informally,

a box (see Figure 3-15). Unlike perspective projection, the size of the viewing volume doesn't change

from one end to the other, so distance from the camera doesn't affect how large an object appears. This

type of projection is used for applications such as creating architectural blueprints and computer-aided

design, where it's crucial to maintain the actual sizes of objects and angles between them as they're

projected.

Figure 3-15 : Orthographic Viewing Volume

The command glOrtho() creates an orthographic parallel viewing volume. As with glFrustum(), you

specify the corners of the near clipping plane and the distance to the far clipping plane.

void glOrtho(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far);

Creates a matrix for an orthographic parallel viewing volume and multiplies the current matrix by

it. (left, bottom, -near) and (right, top, -near) are points on the near clipping plane that are

mapped to the lower-left and upper-right corners of the viewport window, respectively. (left,

bottom, -far) and (right, top, -far) are points on the far clipping plane that are mapped to the same

respective corners of the viewport. Both near and far can be positive or negative.

With no other transformations, the direction of projection is parallel to the z-axis, and the viewpoint faces

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (27 of 49) [4/28/2000 9:45:03 PM]

glOrtho(float left, float right,
 float bottom, float top,
 float near, float far);

• Transformation of the view volume into a unit cube with
extreme points at (-1, -1, -1) and (1, 1, 1).

• Two projection methods: orthographic vs. perpective
projection

• Orthographic projection:

• View volume is a rectangular box.

• Parallel lines remain parallel
after the transform.

• Perpective projection:

• The farther away an object lies from the camera, the
smaller it appears after projection.

• Parallel lines converge at the horizon.

• View volume (called frustum) is a truncated pyramid
with a rectangular base.

projection

Figure 3-13 : Perspective Viewing Volume Specified by glFrustum()

void glFrustum(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far);

Creates a matrix for a perspective-view frustum and multiplies the current matrix by it. The

frustum's viewing volume is defined by the parameters: (left, bottom, -near) and (right, top, -near)

specify the (x, y, z) coordinates of the lower-left and upper-right corners of the near clipping

plane; near and far give the distances from the viewpoint to the near and far clipping planes. They

should always be positive.

The frustum has a default orientation in three-dimensional space. You can perform rotations or

translations on the projection matrix to alter this orientation, but this is tricky and nearly always

avoidable.

Advanced

Also, the frustum doesn't have to be symmetrical, and its axis isn't necessarily aligned with the z-axis.

For example, you can use glFrustum() to draw a picture as if you were looking through a rectangular

window of a house, where the window was above and to the right of you. Photographers use such a

viewing volume to create false perspectives. You might use it to have the hardware calculate images at

much higher than normal resolutions, perhaps for use on a printer. For example, if you want an image

that has twice the resolution of your screen, draw the same picture four times, each time using the

frustum to cover the entire screen with one-quarter of the image. After each quarter of the image is

rendered, you can read the pixels back to collect the data for the higher-resolution image. (See Chapter 8

for more information about reading pixel data.)

Although it's easy to understand conceptually, glFrustum() isn't intuitive to use. Instead, you might try

the Utility Library routine gluPerspective(). This routine creates a viewing volume of the same shape as

glFrustum() does, but you specify it in a different way. Rather than specifying corners of the near

clipping plane, you specify the angle of the field of view (&THgr; , or theta, in Figure 3-14) in the y

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (25 of 49) [4/28/2000 9:45:03 PM]

• Perpective projection:

• The farther away an object lies from the camera, the
smaller it appears after projection.

• Parallel lines converge at the horizon.

• View volume (called frustum) is a truncated pyramid
with a rectangular base.

projection

glFrustum(float left, float right,
 float bottom, float top,
 float near, float far);

Figure 3-13 : Perspective Viewing Volume Specified by glFrustum()

void glFrustum(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far);

Creates a matrix for a perspective-view frustum and multiplies the current matrix by it. The

frustum's viewing volume is defined by the parameters: (left, bottom, -near) and (right, top, -near)

specify the (x, y, z) coordinates of the lower-left and upper-right corners of the near clipping

plane; near and far give the distances from the viewpoint to the near and far clipping planes. They

should always be positive.

The frustum has a default orientation in three-dimensional space. You can perform rotations or

translations on the projection matrix to alter this orientation, but this is tricky and nearly always

avoidable.

Advanced

Also, the frustum doesn't have to be symmetrical, and its axis isn't necessarily aligned with the z-axis.

For example, you can use glFrustum() to draw a picture as if you were looking through a rectangular

window of a house, where the window was above and to the right of you. Photographers use such a

viewing volume to create false perspectives. You might use it to have the hardware calculate images at

much higher than normal resolutions, perhaps for use on a printer. For example, if you want an image

that has twice the resolution of your screen, draw the same picture four times, each time using the

frustum to cover the entire screen with one-quarter of the image. After each quarter of the image is

rendered, you can read the pixels back to collect the data for the higher-resolution image. (See Chapter 8

for more information about reading pixel data.)

Although it's easy to understand conceptually, glFrustum() isn't intuitive to use. Instead, you might try

the Utility Library routine gluPerspective(). This routine creates a viewing volume of the same shape as

glFrustum() does, but you specify it in a different way. Rather than specifying corners of the near

clipping plane, you specify the angle of the field of view (&THgr; , or theta, in Figure 3-14) in the y

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (25 of 49) [4/28/2000 9:45:03 PM]

• Perpective projection:

• The farther away an object lies from the camera, the
smaller it appears after projection.

• Parallel lines converge at the horizon.

• View volume (called frustum) is a truncated pyramid
with a rectangular base.

projection

Figure 3-13 : Perspective Viewing Volume Specified by glFrustum()

void glFrustum(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far);

Creates a matrix for a perspective-view frustum and multiplies the current matrix by it. The

frustum's viewing volume is defined by the parameters: (left, bottom, -near) and (right, top, -near)

specify the (x, y, z) coordinates of the lower-left and upper-right corners of the near clipping

plane; near and far give the distances from the viewpoint to the near and far clipping planes. They

should always be positive.

The frustum has a default orientation in three-dimensional space. You can perform rotations or

translations on the projection matrix to alter this orientation, but this is tricky and nearly always

avoidable.

Advanced

Also, the frustum doesn't have to be symmetrical, and its axis isn't necessarily aligned with the z-axis.

For example, you can use glFrustum() to draw a picture as if you were looking through a rectangular

window of a house, where the window was above and to the right of you. Photographers use such a

viewing volume to create false perspectives. You might use it to have the hardware calculate images at

much higher than normal resolutions, perhaps for use on a printer. For example, if you want an image

that has twice the resolution of your screen, draw the same picture four times, each time using the

frustum to cover the entire screen with one-quarter of the image. After each quarter of the image is

rendered, you can read the pixels back to collect the data for the higher-resolution image. (See Chapter 8

for more information about reading pixel data.)

Although it's easy to understand conceptually, glFrustum() isn't intuitive to use. Instead, you might try

the Utility Library routine gluPerspective(). This routine creates a viewing volume of the same shape as

glFrustum() does, but you specify it in a different way. Rather than specifying corners of the near

clipping plane, you specify the angle of the field of view (&THgr; , or theta, in Figure 3-14) in the y

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (25 of 49) [4/28/2000 9:45:03 PM]

• Perpective projection:

• The farther away an object lies from the camera, the
smaller it appears after projection.

• Parallel lines converge at the horizon.

• View volume (called frustum) is a truncated pyramid
with a rectangular base.

projection

gluPerspective(float fovy, float aspect,
 float near, float far);

Figure 3-13 : Perspective Viewing Volume Specified by glFrustum()

void glFrustum(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far);

Creates a matrix for a perspective-view frustum and multiplies the current matrix by it. The

frustum's viewing volume is defined by the parameters: (left, bottom, -near) and (right, top, -near)

specify the (x, y, z) coordinates of the lower-left and upper-right corners of the near clipping

plane; near and far give the distances from the viewpoint to the near and far clipping planes. They

should always be positive.

The frustum has a default orientation in three-dimensional space. You can perform rotations or

translations on the projection matrix to alter this orientation, but this is tricky and nearly always

avoidable.

Advanced

Also, the frustum doesn't have to be symmetrical, and its axis isn't necessarily aligned with the z-axis.

For example, you can use glFrustum() to draw a picture as if you were looking through a rectangular

window of a house, where the window was above and to the right of you. Photographers use such a

viewing volume to create false perspectives. You might use it to have the hardware calculate images at

much higher than normal resolutions, perhaps for use on a printer. For example, if you want an image

that has twice the resolution of your screen, draw the same picture four times, each time using the

frustum to cover the entire screen with one-quarter of the image. After each quarter of the image is

rendered, you can read the pixels back to collect the data for the higher-resolution image. (See Chapter 8

for more information about reading pixel data.)

Although it's easy to understand conceptually, glFrustum() isn't intuitive to use. Instead, you might try

the Utility Library routine gluPerspective(). This routine creates a viewing volume of the same shape as

glFrustum() does, but you specify it in a different way. Rather than specifying corners of the near

clipping plane, you specify the angle of the field of view (&THgr; , or theta, in Figure 3-14) in the y

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (25 of 49) [4/28/2000 9:45:03 PM]

• Perpective projection:

• The farther away an object lies from the camera, the
smaller it appears after projection.

• Parallel lines converge at the horizon.

• View volume (called frustum) is a truncated pyramid
with a rectangular base.

projection

gluPerspective(float fovy, float aspect,
 float near, float far);

Figure 3-13 : Perspective Viewing Volume Specified by glFrustum()

void glFrustum(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far);

Creates a matrix for a perspective-view frustum and multiplies the current matrix by it. The

frustum's viewing volume is defined by the parameters: (left, bottom, -near) and (right, top, -near)

specify the (x, y, z) coordinates of the lower-left and upper-right corners of the near clipping

plane; near and far give the distances from the viewpoint to the near and far clipping planes. They

should always be positive.

The frustum has a default orientation in three-dimensional space. You can perform rotations or

translations on the projection matrix to alter this orientation, but this is tricky and nearly always

avoidable.

Advanced

Also, the frustum doesn't have to be symmetrical, and its axis isn't necessarily aligned with the z-axis.

For example, you can use glFrustum() to draw a picture as if you were looking through a rectangular

window of a house, where the window was above and to the right of you. Photographers use such a

viewing volume to create false perspectives. You might use it to have the hardware calculate images at

much higher than normal resolutions, perhaps for use on a printer. For example, if you want an image

that has twice the resolution of your screen, draw the same picture four times, each time using the

frustum to cover the entire screen with one-quarter of the image. After each quarter of the image is

rendered, you can read the pixels back to collect the data for the higher-resolution image. (See Chapter 8

for more information about reading pixel data.)

Although it's easy to understand conceptually, glFrustum() isn't intuitive to use. Instead, you might try

the Utility Library routine gluPerspective(). This routine creates a viewing volume of the same shape as

glFrustum() does, but you specify it in a different way. Rather than specifying corners of the near

clipping plane, you specify the angle of the field of view (&THgr; , or theta, in Figure 3-14) in the y

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (25 of 49) [4/28/2000 9:45:03 PM]

the depth buffer

glEnable(GL_DEPTH_TEST);

 Topics for today

• Lighting

• Useful bits and pieces

• repeating key events

• fullscreen mode

• animation that is indepenent of CPU speed

• Textures

1/lighting

it’s all a fake

light in OpenGL consists of

light in OpenGL consists of

light in OpenGL consists of

• ambient light

• scattered light (seemingly coming from all directions)

light in OpenGL consists of

• ambient light

• scattered light (seemingly coming from all directions)

• diffuse light

• light coming from one direction

• scattered evenly when bouncing off a surface

light in OpenGL consists of

• ambient light

• scattered light (seemingly coming from all directions)

• diffuse light

• light coming from one direction

• scattered evenly when bouncing off a surface

• specular light (“shininess”)

• light coming from one direction

• bounces off the surface in a preferred direction

light in OpenGL consists of

• ambient light

• scattered light (seemingly coming from all directions)

• diffuse light

• light coming from one direction

• scattered evenly when bouncing off a surface

• specular light (“shininess”)

• light coming from one direction

• bounces off the surface in a preferred direction

• emitted light

• originates from object – unaffected by light sources

lighting example

void myinit(int width, int height)
{
 GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
 glLightfv(GL_LIGHT0, GL_POSITION, light_position);

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glShadeModel(GL_SMOOTH);

 // continue with initialisation code as before
 //

lighting example

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

 GLUquadricObj* q = gluNewQuadric();
 gluQuadricDrawStyle (q, GLU_FILL);
 gluQuadricNormals (q, GLU_SMOOTH);
 gluSphere (q, 1, 200, 200);
 gluDeleteQuadric (q);

 SDL_GL_SwapBuffers();
}

firstlight.cpp

material properties

• The color of a material depends on the percentage of
incoming red, green, and blue light it reflects.

• Like lights, materials have different ambient, diffuse, and
specular colors.

• Material colors determine reflectance of the light
component

• Ambient and diffuse reflectances define the color of the
material (typically similar or identical)

• Specular reflectance is usually white or gray

lighting example

void myinit(int width, int height)
{
 GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
 GLfloat mat_shininess[] = { 10.0 };
 GLfloat mat_ambient_and_diffuse[] = { 0.0, 1.0, 0.0, 1.0 };

 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
 glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
 glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient_and_diffuse);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_ambient_and_diffuse);

 GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
 glLightfv(GL_LIGHT0, GL_POSITION, light_position);

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glShadeModel(GL_SMOOTH);

 // continue with initialisation code as before
 //

materialcolour.cpp

let’s have a closer look
at the light components

components.cpp (ambient light only)

components.cpp (diffuse light only)

components.cpp (ambient and diffuse light)

components.cpp (ambient, diffuse and specular light)

light source properties

• Properties of light sources can be changed using
glLight*() calls

• Available properties:

• GL_AMBIENT (r, g, b, a – default: 0 0 0 1)

• GL_DIFFUSE (r, g, b, a – default: 1 1 1 1)

• GL_SPECULAR (r, g, b, a – default: 1 1 1 1)

• GL_POSITION (x, y, z, w position – default: 0 0 1 0)

coloured light example

void myinit(int width, int height)
{
 GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
 GLfloat mat_shininess[] = { 10.0 };
 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
 glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);

 GLfloat light_ambient[] = { 0.0, 1.0, 0.0, 1.0 };
 GLfloat light_diffuse[] = { 0.0, 1.0, 0.0, 1.0 };
 GLfloat light_specular[] = { 1.0, 1.0, 1.0, 1.0 };
 glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
 glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
 glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);

 GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
 glLightfv(GL_LIGHT0, GL_POSITION, light_position);

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 // ...

lightcolour.cpp

materialcolour.cpp

A green sphere illuminated by a white light

A green sphere illuminated by a white light
A white sphere illuminated by a green light

A green sphere illuminated by a white light
A white sphere illuminated by a green lightSAME RESULT

A green sphere illuminated by a white light
A white sphere illuminated by a green lightSAME RESULTALMOST same

moving the light

• Lights are influenced by the modelview matrix like any
other object

• Translating the light relative to a stationary object?

• Change model transform to specify the light position

• Set light position after this

• Something like this:

 glPushMatrix ();
 glRotatef ((float) spin, 0.0, 1.0, 0.0);
 glLightfv (GL_LIGHT0, GL_POSITION, light_position);
 glPopMatrix ();
 drawScene();

movinglight.cpp

shading models

shading models

• flat shading

• face normals (one color per polygon)

shading models

• flat shading

• face normals (one color per polygon)

• gouraud shading

• vertex normals (one colour per vertex, interpolated
over the polygon along edges and scanlines)

shading models

• flat shading

• face normals (one color per polygon)

• gouraud shading

• vertex normals (one colour per vertex, interpolated
over the polygon along edges and scanlines)

• phong shading

• interpolate vertex normals at each pixels (not just the
colour values)

shading models

• flat shading

• face normals (one color per polygon)

• gouraud shading

• vertex normals (one colour per vertex, interpolated
over the polygon along edges and scanlines)

• phong shading

• interpolate vertex normals at each pixels (not just the
colour values)

in OpenGL:

shading models

• flat shading

• face normals (one color per polygon)

• gouraud shading

• vertex normals (one colour per vertex, interpolated
over the polygon along edges and scanlines)

• phong shading

• interpolate vertex normals at each pixels (not just the
colour values)

GL_FLAT

in OpenGL:

shading models

• flat shading

• face normals (one color per polygon)

• gouraud shading

• vertex normals (one colour per vertex, interpolated
over the polygon along edges and scanlines)

• phong shading

• interpolate vertex normals at each pixels (not just the
colour values)

GL_FLAT

GL_SMOOTH

in OpenGL:

shading models

• flat shading

• face normals (one color per polygon)

• gouraud shading

• vertex normals (one colour per vertex, interpolated
over the polygon along edges and scanlines)

• phong shading

• interpolate vertex normals at each pixels (not just the
colour values)

GL_FLAT

GL_SMOOTH

in OpenGL:

not implemented!

Flat shading vs. Gouraud shading

glShadeModel(GL_FLAT); glShadeModel(GL_SMOOTH);

now add lighting to our
3D example

what you need

what you need

• set up a light source

what you need

• set up a light source

• use glMaterial instead of glColor

what you need

• set up a light source

• use glMaterial instead of glColor

• calculate normal vectors

what you need

• set up a light source

• use glMaterial instead of glColor

• calculate normal vectors

• faces must be defined in counter-clockwise order

what you need

• set up a light source

• use glMaterial instead of glColor

• calculate normal vectors

• faces must be defined in counter-clockwise order

• to test: glEnable(GL_CULL_FACE);
 glFrontFace(GL_CCW);

what you need

• set up a light source

• use glMaterial instead of glColor

• calculate normal vectors

• faces must be defined in counter-clockwise order

• to test: glEnable(GL_CULL_FACE);
 glFrontFace(GL_CCW);

• normals should be unit length

what you need

• set up a light source

• use glMaterial instead of glColor

• calculate normal vectors

• faces must be defined in counter-clockwise order

• to test: glEnable(GL_CULL_FACE);
 glFrontFace(GL_CCW);

• normals should be unit length

• either do normalisation yourself (recommended)

what you need

• set up a light source

• use glMaterial instead of glColor

• calculate normal vectors

• faces must be defined in counter-clockwise order

• to test: glEnable(GL_CULL_FACE);
 glFrontFace(GL_CCW);

• normals should be unit length

• either do normalisation yourself (recommended)

• or let OpenGL do it for you:
glEnable(GL_NORMALIZE);

thanks! :)

